
Static chaos in spin glasses: the case of quenched disorder perturbations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys. A: Math. Gen. 28 3863

(http://iopscience.iop.org/0305-4470/28/14/008)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 23:42

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/14
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A. Malh. Gen. 28 (1995) 3863-3875. Printed in the UK 

static chaos in spin glasses: the case of quenched disorder 
perturbations 

Vicente Azcoitit§, Eduardo Follanaill and Felix Ritorttq 
t Departamento de Fkica Teorica. Facultad de Ciencias, Univenidad de ZamgoG 50W9 
zarapoza, Spain 
t DepaMmento de Matematica Aplicada, Universidad Carlos III, Butarque 15, Leganes 28911, 
Madrid, Spain 

Received 21 Febmary 1995. in final form 11 May 1.995 

Abstract. We study the chaotic nature of spin glasses against perturbations of the realization 
of the quenched disorder. This type of perturbation modifies the energy landscape of the system 
without adding extensive energy. We exactly solve the mean-field case. which displays a very 
similar chaos to thy observed under magnetic field permrbations, and discuss the possible 
extension of tiiese results to the case of short-ranged models. It appear; that dimension four 
plays the role of a specific critical dimension where mean-field theory is valid. We present 
numerical simulation resnlts which support our main conclusions. 

1. IntPoduction 

A long debated problem in spin glass theory concerns the correct description of the statics 
of the low-temperature phase [l]. There ,is wide consensus on the fact that the mean-field 
theory is well understood in its. essentials, while the name of the equilibrium states for 
short-ranged models is still a controversial subject. Two competing pictures or approaches 
have been proposed the mean-field picture and the droplet model. The mean-field theory 
has been shown to be enormously complex if used to provide a comprehensive approach 
to understand short-range models. Consequently, the search for different approaches like 
droplet models [2] has been encouraged. These models, being phenomenological, try to 
capture the main aspects underlying the equilibrium and non-equilibrium properties of short- 
ranged models. Unfortunately, the mean-field way and these phenomenological approaches 
are far from being complementary and much effort has been devoted in recent years in 
discerning which is the correct picture. Numerical simulations have played a prominent 
role in this task even though the main question still remains unsolved. The main problem 
relies on the large amount of computer time needed in order to reach equilibrium. 

Despite the fact that both pictures are, in fact, contradictory in their essentials, there 
are, however, some common predictions in both approaches. Since it is very difficult to 
decide~which is the correct picture, the strategy of searching for common features in both 
pictures can be useful to shed light on this controversy. Static chaos appears to be a good 
starting point for this programme. By static chaos we understand the sensitivity of the low- 
temperature phase of spin glasses to static perturbations, such as changes in temperature 
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or magnetic field. Mean-field theory [3] and droplet models [2] predict that spin-glasses, 
in the most general case, are chaotic. In mean-field theory, the mechanism of chaos is 
due to the small free energy differences between the different equilibrium states. These 
are of order 0(1/N) and a small perturbation completely reshuffles the Boltzmann weights 
we - exp(-Np&) of the different equilibrium states (or and fc stand for equilibrium state 
and its free energy respectively). In droplet models, the application of a perturbation causes 
a reorganization of the spin-spin correlations at long distances. In both pictures the system 
is very sensitive to the applied perturbations. 

A nice example of chaos concerns the sensitivity of spin-glasses to magnetic field 
perturbations [3,4]. The chaos exponent (to be defined in the next section) for this type of 
perturbation has been computed in mean-field theory [3] and numerically measured in short- 
ranged models [4]. Surprisingly, this chaos exponent does not depend on the dimensionality 
of the system [4]. Even though we do not know of a theoretical derivation of this result, it 
appears to be sound enough to be considered. Droplet models can give an explanation for 
this result under the assumption that 3 is the lower critical dimension in king spin glasses 
(also a long debated problem [5]). In the context of droplet models, the chaos exponent 
for magnetic field perturbations is related to the thermal exponent 6’ which measures the 
free energy cost of the droplet excitations. The result 0 = (d - 3)/2 implies that the chaos 
exponent is 2j3 and does not depend on the dimension. This has to be compared to the 
known results, 0 = -1 (exact) in d = 1 [61, 0 N -0.48 in d = 2 171 and the exact 
result for the chaos exponent (2/3) in the Gaussian approximation to mean-field theory [3]. 
Apparently the simple expression previously reported for 0 correctly matches the small d 
regime in the infinite dimension result. 

Regarding other types of perturbation, the situation is more difficult. For instance in the 
case of temperature changes, recent results by Franz and Nifle [8] show that there is chaos 
even though it is expected to be small (as a first computation by Kondor [3] suggested). 
In the case of short-range models analytical computations by Kondor and Vegso (91 show 
that chaos exponents should depend on the dimension below six dimensions. As in the SK 
model, numerical results in four dimensions [IO] show that the chaos in the temperature is 
also very small. 

The perturbations previously commented upon share the common property that they add 
energy to the system. This work is devoted to the study of a perturbation which does not 
add extensive energy to the system. In particular we will study chaoticity with respect to 
changes in the realization of the quenched disorder. Beciuse of the self-averaging property 
we expect that changes in the realization of the disorder (keeping the form of the disorder 
distribution) shoud not add extensive energy to the system. Therefore chaoticity appears 
because of a complete reshuffling of the free energies of the configurations. We will show 
that the system displays chaos very similar to that shown in magnetic field perturbations. 
Criticality of chaos against perturbations of the quenched disorder has been studied by other 
groups [Ill. The perturbation in which we are interested differs from others by the fact that 
we change the sample realization without moving the system to a new point in the phase 
diagram. 

The paper is organized as follows. The next section defines the model. Section 3 is 
devoted to the study of chaos in mean-field models. Section 4 presents the scaling approach 
we have used to obtain the chaos exponents and shows the numerical results. Finally we 
present our conclusions in section 5. 
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2. The model 

We consider the model described by the Hamiltonian 

. i  

The couplings in (1) are symmetrically distributed random variables with zero mean and 
finite variance (in the mean-field case the variance goes like 1 / N  where N is the number of 
spins). The perturbation we consider consists in randomly changing the sign of a fraction r 
of the couplings, i.e. for each coupling we change its sign with probability r.  On average, 
a total number N r  of the couplings Jij are changed to -Jij . In this way we keep the 
new configuration of J s  in the same ensemble of disorder realizations without moving the 
system in the phase diagram. This is different from other types of perturbation in which, 
for instance (see [l l ] ) ,  the Jij are changed by a small amount S . xij where xi] is a random 
number and S is small. In this case the variance of the distribution is increased (it grows 
proportionally with 8') and we add energy to the system. In what follows we will consider, 
for simplicity, the case of zero magnetic field. 

Denoting by R the set of couplings which change sign, then we can write the perturbed 
Hamiltonian as 

The sum runs over nearest~neighbours in a lattice of dimension d. The mean-field case can 
be obtained in several ways. In the infinite-range model or SK model, all the spins interact 
with one another. Alternatively, one can consider the finite connectivity random lattices 
(with fixed or average number of neighbours [12]). 

Once we have defined the perturbation we construct a full Hamiltonian H&T, r ]  defined 
in a space of two~sets of variables [U;, ri; i ~ =  1, . . . , N I .  The Hamiltonian HlZ is the sum 
of the unperturbed Hamiltonian H [ o ]  plus the perturbed Hamiltonian H J t ] :  

(3) HldU, cl = H b l  + HJrI. 
We define the usual spin-glass correlation functions 

G(x) = (oo~ooo;?~) (4) - 
where (. . .) means average over the quenched disorder and (. . .) corresponds to the thermal 
average over the full Hamiltonian HIZ. The degree of coherence of the two systems is 
measured by the overlap function 

At large distances G(x) behaves like 

(7x1 - exp(-x/f(r)) (6) 
where $(r)  is the chaos correlation length, which is finite for a finite perturbation r (we 
identify the perturbation with the fraction r of changed couplings). The chaos correlation 
length diverges when r + 0 if the unperturbed system stays in the spin-glass phase, 
including the ctitical point. This is because in the limit r -+ 0, G(x) converges to the 
usual spin-glass correlation function which has infrared singularities due to the existence of 
zero modes. The chaos correlation length diverges: 

t ( r )  - r-*. (7) 
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This equation defines the chaos exponent A which can be exactly computed in some 
particular cases. We expect that static chaos is absent when the system stays at a temperature 
above the spin-glass transition (the paramagnetic phase) because in this case t ( r  = 0) is 
finite. Furthermore this is true only if t ( r )  smoothly converges to the finite correlation 
length at that temperamre when r -+ 0. This is the case in mean-field theory but should 
not necessarily be true in finite dimensions [13]. The exponent I can also depend, in 
principle, on the temperature. We will show in mean-field theory that A is constant in the 
low-T phase. At the critical point we face two posibilities. There can be a new chaos 
exponent independent of the usual critical exponents, as suggested in [14]. But it could be 
that the chaos exponent A depends only on the critical exponents. A relation between the 
chaos exponent and the critical exponents in finite dimensions can be obtained as follows: 
when a fraction r of the couplings change, the system changes its energy in a quantity 
propoaional to the square root of the total number of changed couplings, i.e. (rLd)In 
(because the perturbed bonds have random sign). Also the energy at the critical point scales 
like L(e-l)/”.  This yields 

.$ N rvIu (8) 
which gives A = -U/@. This value of A is positive only if CY < 0 which is a general result in 
spin glasses (there is no divergence of the specific heat at the critical point). This expression 
gives the correct exponent in mean-field theory (we will see A = 4) and compatible results 
in four dimensions (see section 4). 

3. Chaos in mean-field Uleory 

Now we face the problem of computing the exponent A in mean-field theory. We follow 
the standard procedures (see [4] for details) and we apply the replica method to the full 
Hamiltonian Hlz (3). where the random variables Jij have I / N  variance: 

Introducing Lagrange multipliers for the different order parameters one gets a saddle-point , 

integral 
- 
Z; = / d P d Q d R  exp(--NA[PQR]) (10) 

with 

where a, b denote replica indices which run from 1 to n, and 

L[U, h1 = P 2 ~ ~ Q d Y e O b  i- Pob%7d + f ~ ~ ( R & U a t b ) .  (12) 

We note that the previous expression is not invariant with respect to the change r -+ 1 - r. 
In fact, redefining the matrix R’ = iR (i stands for the imaginary unit) equation (12) is 
invariant, while the term R:b in equation (11) changes sign. This means that when 
r = 1, the only solution to the equations of motion is R = 0 which means that pure states 
for the initial sample and the completely perturbed one are totally uncorrelated. In contrast, 
the symmetry r -+ 1 - r is preserved in hypercubic finite dimensional lattices where there 
is a gauge symmetry between the configurations of the initial sample and the perturbed one. 

n<h 11.6 
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For finite r values there is one stable solution to the equations of motion: 

Qd = Pub = Qf? Rob = 0 (13) 
where Q:; is the solution for the unperturbed system. The order parameter Rob measures 
the degree of correlation equation (5) between the two systems via the relation 

The stability of the solution R = 0 means that there is chaos against coupling perturbations. 
This is indeed very similar to the case of chaos in a magnetic field and chaos against 
temperature changes. Now we can compute, in the Gaussian approximation, the correlation 
function G(x) of equation (6). The computations can easily be done in Fourier space. We 
define 

~ ( p )  = C(x)e'p". (15) 
x 

In order to find C(p) we need to compute the spectrum of fluctuations in the direction Ruh 

around the stable, solution (equation (13)). The full expression has been reported in [ 3 ] .  
This yields the singular behaviour of the correlation function in the spin-glass phase: 

C(P) - P-4 P + O  (16) 
and at the critical temperature 141, 

C(p) - p-2 p + 0. (17) 
The chaos correlation length f ( r )  is obtained from the minimum eigenvalue of the stability 
matrix: 

(18) 

where the expected values (. . .) stand for average over the effective action I;. A computation 
similar to the first by Kondor 131 gives 

and this yields 

aZA 
a Rub8 Rcd 

= bz'%c)%b4 - b4u - zr)((uuw&rd) - ba'%)(flcZd)) Hah.cd = 

= 2BZr (19) 

(20) 
This result is valid at and below the critical point. We expect it to be valid in other mean- 
field models also such as, for instance, finite connectivity random lattices. In this case, 
where analytical calculations become much more involved, we expect to obtain the same 
results. This will be nicely corroborated by our numerical simulations in section 4. 

-112 r-1J2, U r )  - A,, 

4. Numerical results 

In this section we will discuss our Monte Carlo simulations in order to test the results 
obtained in the previous sections for the chaos exponents. Furthermore, we will present 
simulations in four dimensions. Our results ace compatible with the fact that the chaos 
exponents in finite dimensions are compatible with the mean-field ones. 

We have simulated two types of mean-field model (the Sherrington-Kirkpatrick (SK) 
model 11.51 and the random finite Connectivity lattice model [12]) and a four-dimensional 
(40) king spin glass for which the existence of a finite T phase transition is well established 
[16]. Monte Carlo simulations implement the Metropolis algorithm (for the mean-field 
models) and the heat-bath algorithm (in the 4D case). Special attention has been paid in 
order to thermalize the samples. 
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4.1. Thefinitesize scaling approach 

In order to measure the chaos exponents, we have performed a finite-size scaling analysis 
[4]. The idea is to compute the overlap between two copies of the system, one copy with an 
initial realization of the disorder, the other one with the perturbed realizalion. The overlap 
is defined as 

1 "  
q = - c u i . .  

N .  ,=I 

We define the chaos parameter a(r): 

i.e. we normalize the correlation between the unperturbed and the perturbed system to the 
autocorrelation of the unperturbed system. In this way a(0) = 1 by definition, The system 
is chaotic if the quantity a(r) jumps to 0 (in the thermodynamic limit) as soon as r is finite. 
This means that 

lim lim a ( r )  = 0 while a(0) = 1. (23) 
r-0 N+m 

It is crucial to perform the limits in the order previously indicated. Since a is an adimensional 
quantity, we expect it to scale like 

a = f -(%) 

where 5 is the chaos correlation length of equation (6). In the mean-field case we find, for 
the spin-glass phase (using equations (16) and (20)), 

a = f (Nr') (25) 

and at the critical point we get (using equation (17)) 

a f (Nr'). (26) 

In the case of short-range models we expect the general scaling behaviour 

a f (rL.''A) (27) 

where, in the general case, f is a different function in each of the above equations. Since 
only one exponent (the chaos exponent) must be fitted, these scaling relations are highly 
predictive. As we will show in the next section, our numerical determination gives (below 
Tc) h = 4 with good precision in four dimensions. The exactness of this results (A = i) 
suggests (comparing equations (25) and (27)) that d. = 4 plays the role of a Critical 
dimension where the chaos exponent coincides with the mean-field one. The situation is the 
same as in the case of magnetic field perturbations 141, where the value of this dimension 
only depends on the behaviour of the propagator C ( p )  in the limit p + 0. Then we expect 
the scaling functions f ( x )  in equations (25) and (27) to coincide except by the presence 
of some logarithmic corrections. A numerical test of this prediction is also shown in the 
following subsections. 
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4.2. Numerical results in mean-$& models 

The SK model is defined by the following Hamiltonian: 

H = - Jijuiuj 
i < j  

with the J i j  distributed according to the function p(J;j). In the thermodynamic limit, the 
only relevant feature of the p ( J i j )  is its variance (we restrict to distributions with zero 
mean). To speed up the numerical computations we have taken a binary distribution of 
couplings, i.e. the J s  can take the values 3=& with equal probability. 

m 

1 

0,1 

L ' " " ""  ' " " " ' /  ' " " ' " I  ' """I """"I 

0 480 
0 800 
A 928 

0.01 ' . . . . . . . .  ' ' " " " ' I  . . . . . . . .  ' . """ 
A 

0.01 0.1 1 10 100 1000 

N r 3  

Wgure 1. Chnos in the SK modela  the critical point T, = 1. 

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  """, 

0,001 1 . . . . . . . . I  . ' " ' . ' ' '  . " " " "  . ' ( : . . . . I  

N r 2  

0.1 1 10 100 io00 

Figure 2. Chaos in the SK model nt T = 0.7 in the spin-glnss phase. 

We have simulated the SK model at the critical temperature T = 1 and below the critical 
temperature. We have computed the chaos parameter a for different values of r (r runs 
from 0 to 1). Simulations were done for lattice sizes ranging from N = 32 to N = 1000. 



3870 V Azcoiti et a1 

Figures 1 and 2 show the scaling laws (25) and (26) at the critical point T = 1 and below 
the critical point T = 0.7 respectively. The data do nicely fit the predictions. We have also 
simulated the random finite-connectivity lattice model (Fc model). In this model each point 
o f  the lattice is connected (on average) to a finite number c of neighboutst. In thii case the 
FC model is defined by 

where the Jij are distributed according to 

(30) 
C 

F(Jij)  = @Jij)  + (1 - ") W i j )  N 
and p ( J i j )  is given by 

p ( J j j )  = fs(4j - 1) + f S ( J i j  + 1). (31) 
The parameter c is the average connectivity of the lattice. This model can be exactly solved, 
the main difference with respect to the SK model is that an infinite set of order parameters 
appear. This makes it more difficult to obtain closed expressions for the thermodynamic 
properties [12]. Despite the technical difficulties present in this model we expect to obtain 
the same mean-field chaos exponents. The FC model has a phase transition at a temperature 
pc given by 

1 (C - 1)tanhZ@). (32) 

This expression implies that to have a phase transition, we need c > 2. To compare this with 
the results of the 4D case, we have simulated the FC model with c = 8, in order to have the 
same number of nearest neighbours (on average) as the 4D model. The transition temperature 
is in this case T' N 2.76. We have simulated this model at the critical temperature and 
below that temperature, at T = 2.0. The results for the chaos parameter a are shown in 
figures 3 and 4. The agreement with the scaling predictions ((25) and (26)) is also fairly 
good. 

1 

- 
t 0,l 
5 m 

0.01 081 1 10 too 1000 

N r 3  

Figure 3. Chaos in the FC model with e = 8 at the critical point T, 2 2.16. 

f One can also consider the casse in which the connectiviry is axed and equal to c 
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Y t 
a 

1 

0.1 

0.01 

Figure 4. Chaos in the FC model with c = 8 at T = 2.0 in the spin-plass phase. 

4.3. Numerical results in four dimensions 

We have also done numerical simulations of the king spin-glass model in four dimensions 
with the purpose of analysing the dimensionality effects on the chaos exponent. We have 
considered the king spin glass at d = 4 because it is widely accepted that there is a finite 
T phase transition in this caset. 

We have simulated the model (equation (1)) with a nearest-neighbour interaction, 
periodic boundary conditions and using a discrete binary distribution of couplings as in 
equation (31). The model has a transition at T, - 2.05 [16]. We have done simulations at 
T = T, and T = 1.7. The results are shown in figures 5 and 6. 

0,l 

0.01 

0.1 1 L1.5 10 100 

Figure 5. Chaos in the 40 king spin glass at the critical tempentm T, 2 2.05. We obtain 
I - 213 for lhe chaos exponent. 

At the critical point we obtain a chaos exponent A - 0.65 2= 0.2. We have not done 
a precise determination of the best fit parameter. The values of the error bars have been 
estimated by looking at the range of parameters which make data collapse in a single 
t In the three-dimensional case, €here is still much controversy on the existence of a finite T transition [5] 
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Figure 6. Chnos in the 4D lsing spin glass at T = 1.7 in the spin-glass phase. The ma-f ie ld  
chaos exponent h = t fits the dnta very well. 

scaling curve. Using equation (8) and the hyperscaling relation 01 = 2 - du we get 
U = 0.8 & 0.1. This last value is in agreement with the approximate values of the critical 
exponents determined for the Ising spin glass in four dimensions (discrete couplings [16] or 
Gaussian [17]). It would be very interesting to perform extensive simulations to determine 
whether this exponent is the same for Gaussian couplings. This would suggest that this chaos 
exponent is universal contrary to what has been observed in the usual critical exponents 
[IS], even though there is not full consensus on this point. It is interesting to speculate 
on the possibility that the chaos exponents are the relevant ones (in the sense that they are 
universal) with which to describe the critical behaviour of spin glasses. 

The results in figure 6 (at T = 1.7, within the spin-glass phase!) show that equation (27) 
with h = 2 IS in pretty good agreement with the data. Our numerical estimate for h gives 
h = 0.5 f 0.05 which is compatible with the mean-field result. 

Now we will show that four dimensions is also compatible with some critical dimension 
for the criticality of chaos. In order to get this'result, we will compare the different values 
of the chaos parameter a for different sizes with the corresponding values of the FC model 
with c = 8. We do the comparison with the H3 model, instead of the SK model, because we 
expect that any logarithmic corrections that are present will be smaller in the FC model than 
in the SK model. Both are mean-field models even though the FC model resembles the finite 
d model much more than the SK model does. This fact should be reflected in the nature of 
the corrections to the universal mean-field behaviour. It is clear that in order to compare 
the Fc model with the four-dimensional model we have to put the system in equivalent 
points within the phase diagram. We expect the universal function f ( x )  to depend on the 
temperature (which is an external parameter) in the following way: 

1 . .  

a = f ( A ( T ) ( L J W d ) .  (33) 
In four dimensions, the scaling function f still depends on the temperature via the universal 
amplitude A ( T ) .  It is reasonable to assume that the dependence of the amplitude A ( T )  
on the temperature enters through the spin-glass order parameter q ( T ) .  More concretely, 
below but close to T, we expect 

because the argument of the scaling function f of equation (33) scales like the singular 
A V )  - q 2 4 )  (34) 
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part of the free energy which in mean-field theory scales like Q$ (see. equation (11)). 
Consequently we have to normalize the adimensional ratio to the corresponding 
value of the Edwards-Anderson order parameter for that temperature. For N = 256 the PC 
model gives q(T = 2.0) N 0.11 and the 4D model at L = 4 gives q(T = 1.5) N 0.25, the 
ratio of both numbers being 2.5. Simulation data for both models are shown in figure 7. If 
one considers the SK model then one observes that data fits well but not so nicely as in the 
case of the FC model. 

. 7 t 480 

0,001 
0.01 0,i 1 10 100 1000 

X 

Figure 7. Chaos in the 4D king spin pl3ss at T = 1.7 compared to the Fc model with e = 8. 
The abcisca .z corresponds 10 NrZ (with N = L4 in four dimensions). This scaling suggests 
that four dimensions is the upper critical dimension for the criticality of chaos. 

5. Conclusions 

We have investigated the sensitivity of spin glasses with respect to the application of a 
particular static perturbation. In particular, we have studied the nature of the static chaos 
when a perturbation to the realization of the quenched disorder is applied to the system. 
This can be done in several ways. In our case we have considered a perturbation which, on 
average, does not add energy to the system. Due to the self-averaging property we expect 
that a change in the sign of a finite fraction of the total number of couplings in the system 
should not change its mean statistical properties (and in particular, its energy). This ensures 
that the new perturbed system stays at the same point in the phase diagram. The existence 
of strong chaos for this type of perturbation proves that the reshuffling of the Boltzmann 
weights of the different states is complete. This differs from the case where the perturbation 
consists in applying a magnetic field to the system or where its temperature is changed. In 
these cases extra energy is supplied to the system. 

We have solved the mean-field theory and we have extracted the chaos exponent for 
this type of perturbation. The analytical solution of this problem is very similar to that of 
chaos against magnetic field perturbations where the chaos correlation length can be exactly 
computed [3]. This is in contrast to what happens when the temperature is changed. In  the^ 
last case the system is also chaotic (as recently shown in [SI) but finitesize corrections are 
very much important. 

A finite-size scaling approach to the criticality of chaos shows that d = 4 plays the role 
of an upper critical dimension for the chaos problem. Finite-size scaling studies are very 
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powerful in order to get the chaos exponents. This is because we only need to determine 
one free parameter to make the data corresponding to different sizes to collapse in a unique 
scaling function. We have performed numerical simulations of mean-field models which are 
in agreement with the theory. Simulations in four dimensions are in very good agreement 
with the fact that 4 plays the role of a critical dimension for the chaos exponent (see figure 7). 
This is indeed very similar to what happens in the case of magnetic field perturbations. 

Finally we would like to point out two possible extensions of this work. First it would be 
interesting to do dynamical studies of the relaxation of the overlap function against this type 
of perturbation (as was done for the remanent magnetization after application of  a magnetic 
field). We expect to see aging effects as in the case of magnetic field perturbations. Second, 
it would be interesting to extend the study of chaos to the metastable states using the TAP 
formalism. Most probably, similar chaotic properties will be observed in the structure of 
the metastable states. 
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